II. Evidence for an Iron-Rich Sun

Historical Info     Evidence     Conclusions

  Lighter mass (L) isotopes of He, Ne, Ar. Kr and Xe are enriched in the solar wind (SW) relative to the heavier (H) ones [1; see p. 281 in ref. 2**] by a common mass-fractionation factor,

where   f = (mH/mL)4.56

  When this empirical power law [1] is applied to photospheric abundances, the most abundant elements in the un-fractionated Sun appear to be Fe, Ni, O, Si, S, Mg and Ca [p. 283] - the same elements Harkins [3] found to comprise 99% of ordinary meteorites.   Light isotopes of He, Ne, Mg and Ar are systematically less enriched in solar flares, as if these energetic events by-pass about 3.4 stages of mass-fractionation [4] [p. 282].   Heavy elements are also methodically enriched in material ejected by impulsive solar flares [5].   The prevalence of SW-implanted Li-6 and Be-10 in lunar soils [6,7] confirm that coronal ejecta do not reflect the bulk solar composition.

  Linked isotopic and elemental variations [8,9] in meteorites first hinted that elements from deep in a supernova (SN) formed the interiors of the Sun and the terrestrial planets [pp. 593, 601].   Primordial He accompanies Xe-X, with excess Xe-136 and Xe-124 (ref. 10), but not "normal" xenon from inside [8,9,11,12] the SN [p. 603].   Support for a SN origin of the solar system [p. 593] came from findings of a) excess r- and p-products in other heavy elements [13] trapped with Xe-X [p. 361]; b) complimentary isotopic components enriched in s-products [14; ref. 2 p. 380, 619]; c) age dating [15] based on extinct [pp. 616-617] and longer-lived [pp. 490-491] nuclides; d) terrestrial-type xenon [16] in FeS of diverse meteorites, in the Fe,S-rich planets (Earth and Mars), and in the solar wind, where light isotopes are enriched by 3.5% per mass unit [1; ref. 2 p. 623]; and e) despite poor quality data, the presence of Xe-X in Jupiter [17; ref. 2 p. 519, 527] and isotopes of H and He that could not be converted into those seen in the solar wind by D-burning [pp. 529-543].

  ** All page numbers in brackets [ ] are in ref. 2, Proceedings of the 1999 symposium organized by Glenn T. Seaborg and Oliver K. Manuel.   See http://www.wkap.nl/book.htm/0-306-46562-0


References: [1] Manuel O.K. & Hwaung G. (1983) Meteoritics 18, 209-222; [2] Origin of Elements in the Solar Sysyem: Implications of Post-1957 Observations, Proceedings of the 1999 ACS symposium organized by Glenn T. Seaborg and Oliver K. Manuel (Kluwer Academic/Plenum Publishers, New York, NY, USA, ed., O.K.Manuel 2000), 646 pp.; [3] Harkins W.D. (1917) J. Am. Chem. Soc. 39, 856-879; [4] Lee J.T., Li B. & Manuel O. K. (1997) Comments Astrophys. 18, 344; [5] Reames D.V. (2000) Ap. J. 540, L111-L114; [6] Chaussidon M. & Robert F. (1999) Nature 402, 270-273; [7] Nishiizumi K. & Caffee M.W. (2001) Science 294, 352-354; [8] Manuel O. K. and Sabu D.D. (1975) Trans. Mo. Acad. Sci. 9, 104-122; [9] Manuel O. K. and Sabu D.D. (1977) Science 195, 208-209; [10] Manuel O. K., Hennecke, E.W.& Sabu D.D. (1972) Nature 240, 99-101; [11] Manuel O. K. (1980) Icarus 41, 312-315; [12] Sabu D.D. & Manuel, O.K. (1980) Meteoritics 15, 117-138; [13] Oliver L.L., Ballad R.V., Richardson J.F. & Manuel, O.K. (1981) J. Inorg. Nucl. Chem. 43, 2207-2216; [14] Srinivasan B. & Anders E. (1978) Science 201, 51-56; [15] Kuroda P.K. & Myers W. A. (1997) Radiochim. Acta 77, 15-20; [16] Lee J.T., Li Bin & Manuel O.K. (1996) Geochem. J. 30, 17-30; [17] Manuel O.K., Windler K., Nolte A., Johannes L., Zirbel J. & Ragland D. (1998) J. Radioanal. Nucl. Chem. 238, 119-121.